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The frequency factor in statistical fullerene decay
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Abstract

Experiments on fullerene decay are reviewed and the frequency factor for C2 emission is extracted. The value is also calculated theoretically.
Inclusion of a number of previously disregarded degrees of freedom for the products increase the theoretical estimate for C60 to above 1020 s−1, in
good agreement with experimental results.
© 2006 Elsevier B.V. All rights reserved.
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. Introduction

It is a remarkable fact that the fullerenes, despite being inten-
ively studied during the two decades that have passed since their
iscovery [1], have important properties that have only recently
een understood. The geometric structure of these all-carbon
olecules, based on pentagons and hexagons, was established

nambiguously [2,3] soon after the discovery of a method to
roduce the molecules in bulk quantities [3], as were a num-
er of other properties, including those associated with the solid
tate [4]. Gas-phase properties proved more elusive, in particu-
ar those associated with unimolecular decay of the fullerenes.
ree positively charged fullerenes decay by emission of C2 and
lectromagnetic radiation, and for the neutrals and anions also
y electron emission [5–15]. The nature of delayed electron
mission has been a matter of discussion [12,16–20] but it now
ppears most likely that all these processes are of statistical
ature at timescales of �s and longer [21–27]. Presently, only
he delayed ionization data of [19], obtained with far infrared
xcitation, seem to contradict the generality of this conclusion.
opefully more experiments with this mode of excitation will

hed new light on the issue.

both electrons and atomic fragments can be efficiently described
with a few parameters only, an activation energy, a frequency
factor, and the energy content of the molecule, in addition to the
caloric curve which relates excitation energy and temperature.
The purpose of this paper is to summarize experimental results
which can be used to extract the frequency factor, also called
the A-factor, and to provide a theoretical calculation of the same
quantity.

Both of these tasks are less than straightforward. The exper-
imental determination of the frequency factor suffers from an
effect that can be traced back to the relatively large number
of degrees of freedom in the molecules in combination with
the high stability against disintegration. These two factors have
the effect that the excitation energy required to induce frag-
mentation on the �s timescale, say, is much larger than the
activation energy. In chemical physics this difference in ener-
gies is known as the kinetic shift. Measurements of the so-called
breakdown curves give values of 40–50 eV for the appearance of
fragments of C+

60 [28]. Although such energies can certainly be
deposited into the molecules, as witnessed by the many experi-
ments, e.g., on photo fragmentation of fullerenes, it poses serious
problems when one wants to control the amount of excitation
On the timescale of tens of �s, the three decay channels occur
n parallel, making fullerenes, if not the only molecule for which
his happens, at least the most well documented. The emission of

energy. These problems are particularly relevant for an Arrhe-
nius analysis, which would otherwise be an efficient tool to
extract activation energies and frequency factors. A classical
Arrhenius analysis is based on experimental data pertaining to a
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Nomenclature

c heat capacity (canonical, and generic)
cm microcanonical heat capacity (see Eq. (6))
D dissociation energy, activation energy for C2 loss.

Subscript N refers to fullerene of size N, super-
script + to C+

N

E excitation energy of molecule
Ea activation energy (generic, see Eq. (1))
f(E) distribution function
F Helmholtz free energy of the electronic subsys-

tem. Subscripts 0 and + refer to neutral and
charged molecule

g electronic degeneracy of the molecule or electron.
Subscripts 0 and + refer to neutral and charged
molecule

g(E) distribution function
GN isomer degeneracy of size N
Ie electron emission rate
k rate constant, generic. Subscripts a and e refer to

emission of C2 and electron, respectively
p exponent in powerlaw (Eq. (14))
T temperature (canonical, and generic)
Te emission temperature (see Eq. (5))
Tf fragment temperature (see Eq. (7))
V(r) potential at the point of no return (max of cen-

trifugal barrier)
ωv vibrational frequency
Ye total electron yield (see Eq. (16))

Greek letters
Φ ionization energy (generic) (subscript n refers to

fullerene of size n)
ε total kinetic energy release (KER) in center-of-

mass
ρ level density. Subscripts 0 and + refer to neutral

and charged molecule, respectively. Subscript v

refers to nuclear degrees of freedom
σE standard deviation of excitation energy distribu-

tion
σ(ε) cross section for electron capture
ω Arrhenius factor (generic, see Eq. (1)). Subscript

a refers to C2 loss, subscript e refers to electron
emission

The analysis is analogous to that of the canonical case, apart
from the application of the finite heat bath correction, discussed
elsewhere.

Unfortunately, the requirements on the width of the excita-
tion energy distribution are rather severe if one wants to perform
an Arrhenius analysis of a microcanonical ensemble. To be able
to assign a single decay rate constant to the ensemble with an
average excitation energy 〈E〉 and a width σE one may use the
criterion that the natural logarithm of the rate constant should
vary by less than one over the distribution. If this is the case,

the decay will follow a simple exponential decay, and the rate
constant can be determined unambiguously. This requires that
the relative energy width is less than a few percent of the total
excitation energy. For the 40–50 eV quoted previously for C60,
this upper limit on the width corresponds to about 1.5 eV, which
is close to 2σE in a thermal population from a source where the
molecule is sublimed at 400 ◦C. Any additional width imparted
by the additional 35–45 eV needed to cause measurable decay
will then exceed the critical value. This will give rise to decays
that have a powerlaw time dependence, without any character-
istic timescale. Although this situation does not allow one to
extract rate constants from experimental data, it may neverthe-
less contain useful information about the decay. This point will
be discussed in detail below.

The origin of the width in energy is the size of the molecule.
The relatively large number of vibrational degrees of freedom
with low energy quanta will give rise to a large heat capacity
even at the moderate source temperatures. This situation should
be contrasted with the one prevailing for small molecules, where
a lower source temperature and vibrations higher in frequency
and smaller in number make it possible to have a vibrational
energy distribution which is in the worst case a sum of a few
delta functions. Several researchers have, indeed, interpreted
their spectra pertaining to delayed electron emission from free
fullerenes by a superposition of two or three distinct rate con-
stants [12,16,17,29]. (Probing the dissociation of multi-photon-
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xcited neutral fullerenes and its time dependence has not yet
een possible.) However, the significance of the reported rate
onstants has remained obscure. Experimental data from multi-
le photon absorption are generally not of the single exponential
ype and require a fit with several rate constants. It is not possi-
le to assign the fitted rate constants to a set of specific numbers
f photons absorbed, because the values of these fitted numbers
o not increase with photon energy. Neither do the fitted rate
onstants increase with source temperature, as they should for
n effusive source.

The limited range of timescales often used in experiments on
ullerene ions poses another but related problem. Although the
se of ion traps or storage rings can greatly expand the avail-
ble time range, there are nevertheless important limitations. The
mallest time is limited to roughly a �s. The longest time is not
nstrumental, in which case it would be seconds or even longer.
ullerenes emit electromagnetic thermal radiation, akin to black
ody radiation, but with a slightly stronger dependence on the
emperature than the Planck radiation [21,30]. Still, this temper-
ture dependence of the emitted radiative power is much weaker
han for thermally activated processes (i.e., electron and C2 emis-
ion) which vary exponentially with the inverse temperature. At
igh temperature, C2 emission is the primary decay channel
hereas energy is lost predominantly by thermal radiation at

ow temperatures. The cross-over temperature corresponds to a
2 emission rate constant from 104 to 105 s−1 [13]; the precise
alue depending on the parent molecule. Hence there is a limita-
ion on the dynamic range of about a factor of 100, partly intrinsic
o the molecules and partly instrumental. This limitation on the
imescale reduces strongly the temperature interval, and equiv-
lently the energy window, which carries useful information in
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experiments on C2 decay of ions. As a rule of thumb one has
an increase of a factor of 20 in rate constants when the energy
is increased by 10% on the observational timescale of �s, and
the time range covered thus corresponds to a mere 15% differ-
ence in energy. A simultaneous determination of the frequency
factor and the dissociation energy is very difficult under these
conditions. It corresponds to taking a derivative at an ill-defined
value of the argument. These difficulties are closely related to
those associated with the Arrhenius analysis.

With these difficulties in mind one may instead attempt a
frontal attack with the Arrhenius expression, extracting the
frequency factor from a single well-known excitation energy,
possibly a mean energy. This is only possible if one knows
the dissociation energy as well as the caloric curve linking E
and T. Traditionally, the dissociation energy, D, has been the
desired quantity and to obtain this, one has assumed a value of
the frequency factor. As will be shown later, an error in this
frequency factor will be correlated with the resulting error in
the dissociation energy extracted from the experiments, which
will be incorrect by the term kBT ln (α), where α is the ratio
of the correct frequency factor to the erroneous one. A wide
range of frequency factors has been reported in the literature,
spanning orders of magnitude. The logarithmic dependence on
the error in the frequency factor explains why these values
can still be compatible with physically reasonable values of D.
Thus the frequency factors extracted from a number of experi-
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The remainder of the paper will be divided into two parts, one
which reviews critically the available experimental evidence,
and one where the theoretical best estimate of the frequency
factor is presented. In spite of the experimental difficulties men-
tioned above, it is nevertheless possible to make a number of
independent estimates for the frequency factor. The estimates
will be seen to agree reasonably well with the theoretical esti-
mate.

2. Some basic relations

In thermal equilibrium, the rate constant of a reaction with
activation energy Ea may be expressed by the Arrhenius relation,

k(T ) = ω exp

(
− Ea

kBT

)
. (1)

Although the pre-exponential factor ω, aka Arrhenius factor or
A-factor, is not independent of T, the overwhelming temperature
dependence of k arises from the exponential factor. A measure-
ment of k versus T therefore provides values for both ω and
Ea. For quite a while it was assumed that all atomic clusters,
including the fullerenes, are characterized by about the same
frequency factor for monomer loss, ωa ≈ 1.6 × 1015 s−1 [35],
and the object of scientific desire, D, then would seem to fol-
low from just a single measurement of k for some value of the
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ents are closely related to the determination of the dissociation
nergies.

A number of different assumptions must be made in the cal-
ulation of the frequency factor. Most workers in the field of
nimolecular decay, including fullerene decay, use the transition
tate formulation known as RRKM [31]. The method applies the
oncept of a reaction coordinate and calculates the rate constant
s the relative population at the top of the potential along this
oordinate, multiplied by a flux and a phase space factor. This
ormalism has obvious advantages when dealing with molecules
here steric factors impose strong restrictions on the possible
eometries of reacting species. This is not the case for so-called
orbiting transition states’ where no steric factors are present, a
ituation which seems to be realized in highly excited fullerenes.
or this type of reaction, decay can be described in a transparent
ay with an alternative formulation of rate theory, detailed bal-

nce, which is used extensively in nuclear physics and which has
ound some application in cluster science [32–34]. It relates the
opulations of parent and product states to the statistical weight
f these species, and calculates the decay rate constant in terms
f the rate constant for the inverse process. The crucial point
s that the latter is easily calculated for an orbiting transition
tate. The assumptions necessary to apply detailed balance are
imilar to those needed for RRKM theory (assumptions about
he transition state in the latter correspond to those for the cross
ection in the former). Likewise, two level densities need to be
stimated, viz. those for the parent and the product/transition
tate. The advantage of detailed balance in this connection is
hat the two level densities can be calculated by reference to
he asymptotically free species, and that renders the calculation

ore transparent.
xcitation energy E.
Measurements of C2 emission from C60 in true thermal equi-

ibrium are not easy and most measurements have been made on
nimolecular dissociation in vacuum,

60 → C58 + C2. (2)

any published gas-phase experiments involve the cation
nstead of the neutral molecule:

+
60 → C+

58 + C2. (3)

e will denote the activation energies for reactions (2) and (3)
y DN and D+

N , respectively, where N indicates the size of the
ullerene, and use Ea for a generic activation energy. These quan-
ities are linked by a thermodynamical cycle,

60 + Φ58 = D+
60 + Φ60 (4)

here ΦN denotes the adiabatic ionization energy of the
ullerene CN. Φ60 and Φ58 are known quite well from charge
ransfer and single-photon-ionization data [36–38]. The gener-
lly accepted value for Φ60 − Φ58 is 0.54 ± 0.10 eV.

The rate constant for unimolecular dissociation in vacuum
ay be described by an Arrhenius relation if one properly defines

he temperature of a small, isolated system that carries a vibra-
ional excitation energy E. A transparent description is provided
y the concept of the microcanonical temperature [39,40]. If the
xcitation energy of the parent is E and its microcanonical tem-
erature is Tm then, to first order in 1/cm, the so-called emission
emperature to be used in Eq. (1) is:

e = Tm − Ea

2cm

. (5)
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cm is the derivative of E with respect to the microcanonical tem-
perature Tm, i.e., cm is the microcanonical heat capacity which
is related to the canonical heat capacity c,

cm ≈ c − kB. (6)

cm is often approximated by its high-temperature limit
(3N − 7)kB, although it is not difficult to compute an accurate
value from the vibrational frequencies of CN. The second term in
Eq. (5) is the finite heat bath correction [35,39]. Another relevant
temperature is the fragment temperature Tf which is reflected in
measurements of the kinetic energy release of the reaction. To
first order one has:

Tf ≈ Te − Ea

2cm

≈ Tm − Ea

cm

. (7)

3. Information and misinformation from Arrhenius
plots

One of the difficulties associated with the determination of
frequency factors in unimolecular decay is the experimentally
feasible width of internal energy distributions, as mentioned in
Section 1. The demand on the standard deviation of the energy
σE can be calculated approximately if we use 〈E〉 ∼ cmT and an
Arrhenius expression for k:
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Fig. 1. Simulation of the data from [64] and literature values of determina-
tions of sets of (D, ωa) for C60 as described in the text. Crosses refer to
experimental values. They are from (in order of increasing frequency fac-
tor) [48,49,47,54,52,51,44,53,50]. The horizontal lines are the dissociation
energy ± one standard deviation from the Aarhus coincidence experiments
[53].

These experiments give widely varying values of the frequency
factor. The frequency factor and dissociation energy extracted
from such data will be correlated which can be seen by con-
sidering the timescales involved. Compared with the reciprocal
frequency factor, a microsecond is a very long time, and to a
first approximation one can set all the experimental timescales
equal. If the value of the frequency factor is assumed incorrectly
to be αωa, where α is a dimensionless number, the error in the
dissociation energy, D, can be estimated with the simple rewrite:

k = ωae−D/kBTe = αωae−(D+kBTe ln(α))/kBTe = ω′
ae−D′/kBTe .

(9)

from which we obtain the error of D′ − D = kBTe ln (α) in D.
On �s timescales the ratio of the activation energy D to the
temperature times kB is expected to be 30–35 for ωa = 1019 to
1021 s−1, and it varies only slowly with the timescale. A plot of
D′ versus ln(ω′

a) will thus give a universal curve with slope kBTe

and intercept −kBTe ln (1 �s), and a reduction of the possible
values of D and ln (ωa) to those on the line. The published data
from [44,47–54] are plotted in Fig. 1 together with other data
to be discussed below. The data points shown do indeed have
the expected correlation. The temperature can be extracted from
the slope and intercept of the straight line. The two different
procedures yield temperatures of 4100 K and 4800 K which are,
everything considered, in surprisingly good agreement with the
e

4

t
p
[

ln(k) = d ln(k)

dE
2σE = D

kBTe

2σE

E
< 1, (8)

here Te is an effective emission temperature and we use 2σE

o represent the width of the energy distribution. The special
roblem associated with large molecules is that a value of Te

hich gives decay on an experimentally reasonable timescale
nvolves a large energy, imparted by, e.g., a significant number of
bsorbed photons. An attempt to extract decay rate constants for
system with a width larger than the above is doomed to give too
mall a variation with energy, and hence to produce an Arrhenius
lot with too low a slope. One clear example of this (for electron
mission from anions) is found in [41] and discussed in [21]. As
f today, no experiment on thermally activated decomposition of
60 or C+

60 has been reported in which the fullerenes constituted
microcanonical ensemble to a reasonably good approximation.

The experiment of Ding and co-workers, who applied one-
hoton-ionization in the energy range 15–120 eV combined
ith threshold-photoelectron-photoion coincidence (TPEPICO)

o gas-phase fullerenes [42] would have qualified if successful.
more recent, non-coincidence one-photon study [43] suggests

hat TPEPICO should be given another chance.
Experiments with insertion of a metal ion into the fullerene

age to form endohedrals are also potentially useful [44–46].
n this approach, the excitation energy E is simply the collision
nergy, plus the initial thermal energy of CN and the (poorly
nown but rather small) adiabatic binding energy between Na+

nd CN.
Most of the experiments that potentially contain the prob-

em with broad energy distributions, or which have been inter-
reted with an assumed frequency factor, have been performed
t timescales from microseconds to milliseconds [44,47–54].
xpected temperatures of 3000–4000 K.

. Breakdown curves

A number of experiments have been performed in order
o construct the breakdown curves, which show the survival
robability of ions as a function of their excitation energy
28,52,55,56]. This method requires a connection between E and
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directly controlled experimental parameters such as the electron
energy in electron impact experiments, or the collision energy
in surface collision experiments. Several experiments have been
reported in which the energy deposition function was deter-
mined. Electron impact ionization, in particular, has been useful
because of the well-defined upper cut-off in the energy distribu-
tion. For C+

60 produced from a thermal beam of C60 the cut-off
is Eel − Φ60 + E(Tov) where Eel is the electron impact energy,
Φ60 = 7.6 eV the ionization energy of C60, and E(Tov) the ther-
mal energy of C60 vaporized at temperature Tov (assumed to be
low enough so thermal decomposition and radiative cooling of
the neutral beam are negligible). In the experiments, C+

60 forms
already at the threshold for direct ionization, Eel = 7.6 eV, but
C+

58 fragment ions do not appear until the electron energy reaches
about 45 eV. Smaller fragment ions appear at even higher ener-
gies. The exact values of the appearance energies depend on the
observation time and the thermal energy E(Tov). The observa-
tions are consistent with statistical formation of fragment ions
by sequential loss of C2 from hot C+

60. Dissociation energies
derived from these and similar experiments [57] are commensu-
rable with the value of the pre-exponential factor for C2 loss that
was assumed in the data analysis. The conclusion is that even if
the energy deposition function is known in these experiments,
the value of the frequency factor can only be determined from
these experiments if the dissociation energy is entered into the
data analysis or vice versa.
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of the energy distribution of one of them will provide f(ε) and,
hence, Tf and Tm.

One issue that limits the accuracy of the method is the
rather long measurement time t. For fullerene ions, radiative
cooling cannot be ignored if t 
 10 �s [13,76]. But the two
main problems in connection with frequency factors or dissoci-
ation energies are that (1) the inversion of experimental data to
extract a temperature demands that the cross section is known
[34,39,47,72,77], and (2) even if the energy content of a molecule
is determined in the form of a microcanonical temperature, it still
requires either the dissociation energy or the frequency factor to
be known to extract the other.

Although these problems make absolute determinations of
frequency factors with the method doubtful, the kinetic energy
distributions are nevertheless interesting in their own right
because they provide estimates of the magnitude of Tf to bet-
ter than approximately 20%.

The value of the average kinetic energy release, ε̄, is 2kBTf
for an C2 capture cross section which is independent of the
fragment kinetic energy, e.g., a geometric cross section. This
arises as the mean of the distribution ε exp (ε/kBTf). Experiments
on positively charged fullerenes give consistently distributions
of the form

√
ε exp(−ε/kBTf ), which has a mean value of

ε̄ = 1.5kBTf [51,78]. The reduction from 2 to 1.5 is now well
understood as the consequence of the long range interactions
. Kinetic energy release distributions

Electron impact ionization, used to measure the breakdown
urves, has the advantage of a sharply defined upper limit but it
roduces no distinct lower limit. Most excitation mechanisms,
uch as surface collisions [57–63] and multiphoton excitation
12,16,64–66], also give rise to very broad energy distributions.
ooling by evaporation, though, will always introduce an upper
ut-off. Moreover, those molecules that are only weakly excited
ill not contribute to the reaction because the probability for
ecay is 1 − exp (−kt). Taken together, the energy distribution
f molecules that contribute to the decay signal observed at time
is, in the absence of competing decay channels, centered at an
nergy E that approximately corresponds to a rate constant of
/t.

This self-selective mechanism has been applied widely in
ttempts to determine the dissociation energy for C2 loss
rom empty and filled (that is, endohedral) fullerene cations
47,50,51,67–73] through measurements of the kinetic energy
elease functions.

For statistical processes, the distribution f(ε) of kinetic
nergy, ε, reveals the microcanonical temperature Tf of the frag-
ent [34,39,74,75]:

(ε) ∝ εσ(ε) exp

(
− ε

kBTf

)
(10)

here σ(ε) is the capture cross section for the reverse reaction,
nd ε is summed over all products. If the reaction produces only
wo products, such as reactions (2) and (3), then a measurement
between the polarizable C2 and the charged C+
N−2 [77], or in gen-

eral as interactions involving polarizabilies [72], which gives rise
to a Langevin-like capture cross section. The cross-over from an
energy independent cross section to a Langevin-like cross sec-
tion is determined by the ratio of the polarization energy at the
capture distance and the temperature [77]; at values below unity
the capture is essentially Langevin-like, and energy independent
above unity. We must expect a higher coefficient for kBTf for ε̄,
between 1.5 and 2, for the decay of the neutral species.

Although the kinetic energy distributions are indistinguish-
able from those arising from a Langevin cross section, the
analysis in both [77] and [72] shows that this similarity can
be misleading and lead to an overestimate of Tf by as much
as 20%. Interestingly, this number is close to the discrepancy,
18%, between the experimental Tf from [51] and those expected
from an analysis of the electron emission data of Bordas and
co-workers [23,26,27] that will be discussed elsewhere in the
paper. If this holds, it may give an experimental value for the
polarizability of C2 which has not previously been measured
experimentally. The two, very different, theoretical values are,
spherically averaged, 78 a3

0 [79] and 27 and 24 a3
0 [80]. From

the data in [51] and assuming that the C2 is captured when it
reaches a distance of 3.5 Å from the center of the C+

58 one gets
a polarizability between 1.7 Å3 and 2.9 Å3, i.e., significantly
lower. A discussion of these interesting questions will take us
too far astray.

The conclusion of this discussion of KER data is that mea-
sured KER data alone are not sufficient to determine tempera-
tures to better than 10–20% even if they have a very low intrinsic
statistical uncertainty, although the method suggested in [51]
seems promising. In addition, it is still only with the input of a
known dissociation energy this type of data can be used to extract
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the frequency factor. In calculations of corrections we will use
the approximate temperature dependence ε̄ = 1.5kBTf .

6. Time matters, and why competition is good for you

None of the experiments discussed above has separately pro-
vided values for the dissociation energy (either D60 or D+

60) and
the Arrhenius factor ωa.

A decade ago it was realized that more information can be
garnered if another dimension, time, is included in the analysis.
The value of these experiments is two-fold: (i) they can reveal the
presence of elusive channels that are difficult to track otherwise,
and (ii) they can be used to unambiguously determine key quanti-
ties, such as the emissivity for black body radiation [5,13,55,81],
or the activation energy for C2 loss [24,53,64,76,82].

The competition between C2 loss and thermal radiation has
been described shortly elsewhere in the paper and here we focus
on the competition between electron emission (thermionic emis-
sion) and dissociation (C2 loss) from neutral fullerenes. Both
reactions can be described by Arrhenius relations, and the two
reactions combined provided early evidence that the frequency
factor for C2 emission, ωa, greatly exceeds the Klots value of
ωa ≈ 1.6 × 1015 s−1 [35].

Let us consider an ensemble of C60 molecules that was ini-
tially prepared with an energy distribution g(E). If only one
r
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In Appendix A the corrections to this result from miscellaneous
effects are discussed quantitatively. Here we merely mention
that in the experiment a powerlaw was, indeed, observed, with
an exponent p = 0.64 ± 0.10 [64]. Φ60 = 7.6 eV then results in
D60 = 11.9 ± 1.9 eV. This result together with the assumption
ke 
 ka demands that ωa exceeds ωe by several orders of mag-
nitude.

It is possible to get a first estimate of ωa with simple argu-
ments. The total electron yield was determined in [65] to a value
of Ye = 2.6%. This value represents a lower limit in the sense that
it only includes electrons produced within the retention time of
the molecules in the active area of the detector, between zero and
about t0 = 20 �s. For an order of magnitude estimate the value
of Ye can be set equal to the ratio of rate constants:

Ye ≈ ke

ka

= ωee−Φ/kBTe

ωae−D/kBTe
, (16)

where we have neglected the correction due to different emission
temperatures. The exponentials can be expressed as powers of
each other, and with the identification ke = 1/tobs, where tobs is the
reasonably well-defined measurement time, Eq. (16) is solved
to yield:

ωa = YD/Φ
e (ωe)D/Φ 1

tobs
= 9 × 1022 s−1, (17)

if the value ω = 8.3 × 1014 s−1 from Section 8 is used. As an
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eaction (with a rate constant k(E)) is possible, then the rate
onstant averaged over the ensemble at time t will be:

¯(t) =
∫ ∞

0
k(E)g(E)e−kt dE. (11)

e have assumed that the ensemble is not populated by decay
f larger molecules. If g(E) does not vary stronger than, e.g., a
mall power of the energy over the energy range that supports
ecay at time t, one readily obtains from Eq. (11):

¯ ∝ t−1. (12)

his is indeed observed in storage ring experiments with decay
f small metal cluster anions, and in similar experiments with
the short time) decay of fullerene anions [5,83]. An energy
istribution that is not flat will only slightly modify this time
ependence, as shown in Appendix A.

Things get more interesting if two channels compete. If the
lectron emission (rate ke) is being monitored in the presence of
2 emission (rate ka), one obtains the emission intensity:

e(t) =
∫ ∞

0
ke(E)g(E)e−(ke+ka)t dE. (13)

ith the assumption ke 
 ka, which is consistent with the results
f a separate experiment which measured the total electron yield
er C60 [65], one obtains:

e ∝ t−p (14)

here

≈ D

Φ
. (15)
e

stimate this cannot be an extremely reliable number, but it nev-
rtheless shows that the frequency factors for electron emission
nd dimer emission are separated by a very large factor.

The above schematic calculation has been supplemented by a
ess transparent but more complete simulation of the data in [64],
imilar to the one performed in [84]. The electron emission rate
onstant was averaged over a flat energy distribution, stretching
rom 0 K to 10,000 K, with a numerical resolution of dT = 2 K.
he highest temperature, Tmax, corresponds to approximately
50 eV internal energy for neutral C60, far beyond the value
equired for decay on the nanosecond timescale. The electron
mission rate, Ie, was calculated for three different times, 0.1 �s,
�s and 10 �s, as:

e(t) =
∫ Tmax

0 ke(T )e−(ke+ka)t dT∫ Tmax
0 dT

. (18)

he exponential factor accounts for the depletion at time t. The
xpressions used for ke and ka were:

e = ωe exp

(
− Φ

kBT − kBΦ/2cm

)
,

a = ωa exp

(
− D

kBT − kBD/2cm

)
, (19)

ith Φ = 7.6 eV the ionization potential of C60. The param-
terization of the two rate constants include the finite heat
ath correction explicitly, but are otherwise kept simple on
urpose, in order to have as transparent an expression as
ossible.

Both frequency factors were varied between 103 s−1 and
027 s−1 with steps of factors of 2, and the dissociation energy in
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the interval 2 eV ≤ D ≤ 15 eV, with steps of 0.1 eV. Three criteria
were used for agreement with experiments. First of all, the value
of p was restricted to 0.55 ≤ p ≤ 0.75. The limits were decided to
take both experimental and estimated systematic uncertainties
into account. Second, the curvature of the log–log plot should
not deviate appreciably from zero. Quantitatively, the absolute
difference between the two slopes determined from the rates at
0.1 �s and 1 �s, and at 1 �s and 10 �s, were restricted to be less
than 0.03, i.e., ca. 5% of the mean value. The third criterion was
a total electron yield which conforms with the measured limit
of Ye � 2.6% used in the simple estimate above. This number
depends somewhat on the precise photon absorption statistics
in the experiments and the interval chosen in the simulation.
For this reason fairly generous limits were chosen, 0.005 ≤ Ye

≤ 0.2.
In addition to the explicit inclusion of the finite heat bath

corrections to the rate constants the simulations thus also auto-
matically include the correction of order 1/ln (ωat) to p which
was pointed out by Klots (see Eq. (17) in [85]). It does not
include any temperature dependence of the frequency factors. It
is also restricted to a flat initial energy distribution.

The simulation results are shown in Fig. 1. All sets of ωe,
ωa values that fulfill the three conditions are contained in the
hatched area, with the restriction that the electron emission
frequency factor be between 1013 s−1 and 1016 s−1. Values
beyond these are found to the left (ω < 1013 s−1) and right
(
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with respect to the temperature:

Tmax,N = DN

2cN

+
DN

ln(ωat)
. (22)

(cN is the heat capacity). This relation already suggests why
the frequency factor appears in the metastable fractions:
Tmax,N depends on time, albeit weakly, through the factor
1/ln (ωat).

A lowest temperature also exists, provided the molecules
have evaporated at least once. Based on these observations it
is possible to calculate the abundances in an ensemble of freely
evaporating molecules to be [86]:

IN ∝ cNTmax,N − cN+2Tmin,N

= DN + DN+2

2
+ DNcN − DN+2cN+2

kB ln(ωat)
, (23)

if the frequency factors for N and N + 2 are assumed equal.
Molecules, mass separated at time t1 in the time-of-flight accel-
eration, will have a metastable decay fraction at t2 of:

P(t2, t1) = cN (Tmax,N (t1) − Tmax,N (t2))

IN (t1) ( )
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ωe > 1013 s−1) of the hatched area. The points show that a
imited region of parameter space is consistent with the exper-
mental results in [64], and that the lower edge overlaps with
ndividual experimental points determined by others.

. Metastable decay

Measurements of metastable decay fractions in molecular
eams allow an independent probe of the frequency factor for
harged particles. The number extracted is coupled to the heat
apacity, as will be clear, but still gives estimates that are reliable
nough to be interesting.

Metastable fractions are frequently measured in time-of-
ight devices equipped with a reflectron, which is detuned from

he optimal resolution so that molecules which have fragmented
fter the initial acceleration but before entry into the reflectron
ill appear as individual peaks which can be integrated and nor-
alized to the total of parent and fragment peak. For the same

onditions under which one observes a 1/t decay one will have
metastable fraction which grows with flight time as:

∝
∫ t2

t1

1

t
dt = ln

(
t2

t1

)
. (20)

he constant of proportionality is calculated below.
The relationship hinges on the existence of a highest temper-

ture, Tmax, in an ensemble of freely evaporating particles. This
emperature can be derived from solving the relation:

a = 1

t
(21)
≈ cNDN

kB ln(ωat1) ln(ωat2)IN (t1)
ln

t2

t1

= cNDN

kB ln(ωat1) ln(ωat2)(cNTmax,N − cN+2Tmin,N )

× ln

(
t2

t1

)
≡ αN ln

(
t2

t1

)
. (24)

determination of P(t2, t1) thus allows one to determine a com-
ination of cN, cN + 2, DN, DN + 2 and ωa. The molecules cool not
nly by C2 emission but also by emission of thermal radiation
13,81,82,87]. The presence of thermal radiation, however, only
hanges Eq. (24) by the addition of another term which depends
n the difference t2 − t1. If this difference is kept constant in
he experiments, the slope of P versus ln (t2/t1) is still given by
q. (24). Radiative cooling also changes the value of t2, which
ecomes equal to the cooling time, which is defined as the time
t takes for the C2 emission rate constant to decrease by a factor
/e. For cationic fullerenes it is on the order of several tens of
s, determined directly in the experiments [76]. For the pur-
ose of this calculation we can then use the approximate value
n (ωat1) ln (ωat2) ≈ (ln (ωa10 �s))2.

Together with experimentally determined slopes, αN, we can
se Eq. (24) and solve for ln (ωa10 �s) if we know the DN’s
and the cN’s). Instead of using DN’s from the literature, which
ay be influenced by assumed values of frequency factors, we

earrange Eq. (24) and sum over consecutive fullerene sizes in
rder to telescope the differences cNDN − cN + 2DN + 2 into the
ifference between the first and the last term in the sum. This
ancels all terms cNDN between the smallest and largest size in
he measurement series. With the experimental slopes αN the
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procedure gives:

(ln(ωa10 �s))2 =
D̄�N+2

2 + 1
kB ln(ωat1) (DNmincNmin − DNmax + 2cNmax+2)∑ cNDN

kBαN

, (25)

where D̄ is the average dissociation energy over the range con-
sidered. The last term in the numerator can be approximated by
setting the DN’s to the mean value, and we will use the same
approximation for the denominator. In this term also the factor
ln (ωat1) can be approximated with ln (ωa10 �s). Hence

(ln(ωa10 �s))2 ≈ 1 − (3/ ln(ωa10 �s))

cN̄α−1
N

(26)

from which ωa is easily found when the αN’s are known.
The derivation of Eq. (26) requires that the energy distribution

over a mass is flat. This was not the case for the high statistics data
in [14] due to limitations in the laser power. This is reflected in
the mass abundance spectrum which decreases towards smaller
fullerene masses. A correction to the radiative cooling parameter
from this effect was calculated, based on the mass spectrum
itself, with a procedure discussed in detail in [66]. A similar
calculation for the frequency factor gives a correction of:

(ln(ωa10 �s))2 → (ln(ωa10 �s))2

1 − (α′cN̄/(ln(ωa10 �s))2)〈ln(t2/t1)〉 .
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in the ELISA storage ring [76] for a range of fullerene sizes
similar to the above. The problem with the broad energy distribu-
tions which would give a powerlaw decay with no characteristic
time was handled naturally by the radiative cooling which trun-
cated the decay after several tens of microseconds. Modelling
the radiative cooling, the temperature was extracted and con-
verted to a dissociation energy, using an Arrhenius expression
with the above frequency factor.

The important point here is that the data for N = 62–70 were
compared with thermo-chemical data on the binding energies of
C60 and C70. The standard enthalpies of combustion of C60 and
C70 have been determined by microcalorimetry (see [88] and
references therein). These data provide a check of the absolute
values of the dissociation energies. Consider the reaction:

C+
70 → C+

60 + 5C2. (28)

The reaction enthalpy is given by the relevant gas-phase heats
of formation �Hf deduced from measurements on the neutral
species in thermodynamic equilibrium, with a small correction
based on the ionization energies of C70 and C60 as explained in
Section 2,

�Hf (C70, g) − �Hf (C60, g) − 5�Hf (C2, g) + Φ60 − Φ70

≈
70∑

D+
N. (29)
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(27)

he parameter α′ is an experimental parameter on the order of
.15/D to 0.3/D, derived from the specific abundance spectra
sed and is thus not a universal parameter for fullerenes. The
orrection to ln (ωa10 �s) in Eq. (27) is typically 5%.

Experimental data from the parent molecules C60, C70 and
84 were analyzed with the above formalism. If all frequency

actors are identical the values should be identical for these three
eries (we have ignored the difference in mass separation time
1 which is small on a logarithmic scale). The result is that for
he range N = 42–58, the value is ln (ωa10 �s) = 34.1 ± 1.2, for

= 52–68 it is 32.2 ± 1.2, and for N = 68–82 it is 33.5 ± 2.2.
hese values are consistent with one single value of 33.2 ± 0.8.
his analysis does not take into account the different degrees
f radiative cooling, but these were found to be quite similar
14], and given the logarithmic dependence, small differences
n cooling time will have very minor effects on the analysis.

Analogous numbers were extracted from the metastable
ecay of endohedral fullerenes, La@C+

N , with 68 ≤ N ≤ 80,
roduced by photoexcitation of La@C82. The mean was
n (ωa10 �s) = 31.5 ± 1.4. The similarity with the empty
ullerenes should not surprise; also the radiative cooling is quite
imilar [14].

In summary, the frequency factor is found from metastable
ragmentation to be between 1019.1 s−1 ≤ ωa ≤ 1019.8 s−1 for
ositively charged fullerenes between N = 42 and 82.

In [82] Lifshitz and co-workers suggested a value of
a ≈ 2 × 1019 s−1 for C+

60, based on data on metastable decay,
n fair agreement with the values here and in [13,14]. A similar
alue for the frequency factor (2 × 1019 s−1) was used to suc-
essfully simulate the metastable decay of positive fullerenes
n=62

his relation is not exact because it ignores the change in ther-
al energies between reactant and products, and the work term
�V. However, a rough estimate [89] based on the equipartition
heorem shows that this correction is less than the uncertainty of
he average value of the left-hand-side, 41.0 ± 0.6 eV which was
erived from a large number of published data [51]. This value
s in excellent agreement with the sum of dissociation energies
educed from the ELISA data, 40.4 ± 0.8 eV [76]. The agree-
ent suggests that the value assumed for the Arrhenius factor,

or N = 62–70, was approximately correct.

. Electron temperatures

Electron energy spectra provide very important information
n the temperature of fullerenes undergoing thermal electron
mission. These data allow one to compare the line in the (ωa,
)-plane defined by Eq. (9) for C2 emission with temperatures

xtracted from electron emission, i.e., from a different process
nd potentially different temperature. Likewise, it will be pos-
ible to test the hypothesis that C2 emission is the dominant
hannel in decay of neutrals.

The thermal electron emission rate constant and the kinetic
nergy distribution is discussed in Appendix B. It is shown
hat the electron energy distributions are strongly influenced
y the Coulomb potential and that they can be described by
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quasi-Boltzmann distributions:

P(ε) ∝ (ε + 4.1 eV)e−ε/kBT+ . (30)

provided the electron sticking coefficient is unity. This is in good
agreement with the experimentally measured electron kinetic
energy distributions of Ding et al. [90], who fitted the tempera-
ture to kBTf = 0.32 ± 0.05 eV, or Tf = 3700 ± 600 K. No sign of
a reverse activation barrier was seen.

A later and more detailed study of the thermal electron spec-
trum was made by Bordas et al. and gave a temperature of
kBTf = 3390 ± 100 K for decay between 1 �s and 1.1 �s after
laser excitation [23]. With the assumption that the C2 evapora-
tion rate determines the highest temperature in the ensemble,
this result provides an independent constraint on the possible
values of D and ωa as follows. The measured temperature is the
product temperature for the electron emission process, Tf(Φ). It
is related to the parent temperature as explained in Section 2.

With ka � 1/(1 �s) we have the emission temperature for C2
decay:

Te = Tm − D

2cm

= D

kB ln(ωa1 �s)
⇒ Tm

= D

(
1

kB ln(ωa1 �s)
+ 1

2cm

)
. (31)
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in [24] to fit coincidence experiments was about 2.5 × 1015 s−1,
i.e., a factor of 10 below the upper limit and a factor of 3 dif-
ferent from our estimate. In contrast, the integrated theoretical
electron emission rate constant derived in Appendix B is a fac-
tor of 25 greater. There may be a number of reasons for the
discrepancy. One possibility is that the degeneracy factor of 10
is overestimated, another that the sticking coefficient is less than
unity. We do not expect this explanation to provide the answer,
because neutral C60 has been found to capture low energy elec-
trons with a sticking coefficient of typically 1/2, albeit with a dip
around 0.4 eV [91]. A sticking factor of 1/2 would reduce the
rate constant correspondingly. We expect that both charge state
and temperature will favour sticking to hot cations, relative to
cold and neutral molecules. Another possible explanation for the
reduced rate constant could be that the electron yield is higher
than the number given, but this can only explain a minor part of
the difference, as can be seen from the above estimates.

9. Coincidence experiments

The analysis of the powerlaw decay in [64] demonstrated
the possibility of extracting dissociation energies without any
knowledge of the frequency factor. The downside of this is that
the experiments are obviously then not sensitive to the value of
this parameter.
he measured temperature is found as Tf = Tm − Φ/cm. This can

e solved for D which gives:

= kB ln(wa1 �s)
Tf (Φ) + (Φ/cm)

1 + (kB ln(ωa1 �s)/2cm)
. (32)

his result is independent of the detailed value of the frequency
actor for electron emission, although it of course requires that it
s not so high that electron emission dominates over C2 emission.

Eq. (32) defines a curve in the (D, ln (ωa))-plane which is
lose to a straight line. The relative correction in the denominator
s about 10%. The curve is plotted in Fig. 1. With the scatter in
he nine points for C2 emission and the nearly same slope on the
ine, it effectively does not add a new constraint to the possible
alues of D, ωa. It does, however, confirm the previous analysis
or the C2 emission.

The measured temperature can also be used to determine an
pproximate value of the frequency factor for electron emission,
hen combined with data on the electron yield. If the limit of
.6 ± 1.1% on the total electron yield from [65] is used, we have
hat ke ≈ 0.026ka, and hence

1

t
= ka + ke =

(
1

0.026
+ 1

)
ke = ωee

−Φ/kB
Td+(Φ/2cm) ⇒ ωe

= 1

39 �s
e

Φ/kB
Td+(Φ/2cm) . (33)

here t = 1 �s and cm = 173 kB. This gives the value
e = 8.3 × 1014 s−1 with an errorbar of a factor of 2 to each side

rom the 100 K uncertainty on the temperature [23]. If all decay
roceeds via electron emission, contrary to our expectations, the
requency factor increases to 3.1 × 1016 s−1 which must be con-
idered an upper limit. For comparison, the frequency factor used
A new development occurred when the Aarhus group
embarked on an ambitious experiment in which electron emis-
sion and ion formation from multiphoton-excited C60 was mea-
sured in coincidence. This way the formation of C+

60 and C+
58

(formed from excited C58 fragments) could be monitored sep-
arately, as a function of time [24]. Using a dielectric model to
estimate the radiative cooling, and the size distribution of the
fragment ions to estimate the initial energy distribution g(E),
it was found that the Arrhenius factor ωa for C2 loss from C60
exceeds that of C58 by more than two orders of magnitude, while
the Arrhenius factor of C70 exceeds that of C58 by one order of
magnitude [53]. The increased precision caused by the coinci-
dence technique made the determination of the value of p much
more precise than previously. Combined with the fact that the
electron yield from C60 was consistent with the one found in [65]
and that electron emission therefore was confirmed as a minor-
ity channel allowed a precise determination of the dissociation
energy of C60 to 10.6 eV [24,53], of C70 to 9.7 eV [53], and of
C76 to 8.2 eV [92], with uncertainties of 0.3 eV in all three cases.
The value for C60 is plotted in Fig. 1 as horizontal hatched area
with a vertical height indicating the ± 1σ uncertainties.

The frequency factors are not determined directly in these
experiments, but the ratios ω60/ω58 ≈ 100, ω70/ω68 ≈ 10 and
ω76/ω74 ≈ 1 can be extracted from the data. Absolute values
were calculated with an assumed frequency factor for electron
emission. As we have seen, the values chosen is close to the
one derived from the electron energy spectra data, and further-
more not extremely far from the theoretically calculated value.
We therefore have some confidence also in the absolute val-
ues which are ω60 = 2.3 × 1021 s−1, ω70 = 1.7 × 1020 s−1 and
ω76 = 1.0 × 1019 s−1.
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10. Theoretical estimate of the frequency factor

Earlier attempts to calculate the frequency factor can be found
in [28,57,85]. The frequency factor is not given explicitly in
[57], but the rate constant is on the order of 105 s−1 at E = 50 eV
for an activation energy of 7 eV. With a temperature of 3890 K
at this energy, the frequency factor would be about 1014 s−1,
depending on the precise values of the frequencies used. In [28] a
semiempirical expression by Klots is used, along with two other
expressions which give rate constants that agree within an order
of magnitude and a factor of 3–4 within that given in [57], and
thus significantly below any value presently considered. In [85]
the frequency factor was calculated with a slightly modified ver-
sion of another theory of Klots’ [35], which incorporates some
of the features of the detailed balance equation given below. The
result of 8 × 1020 s−1 was considered an upper limit. A number
of the contributions included in the derivation below were left
out but a channel degeneracy was included, corresponding to a
factor which counted the possible number of carbon atom com-
binations that can lead to evaporation. This was taken to be equal
to the number of surface atoms, i.e., 60. This constitutes a double
counting since the factor Qsurf already included the surface area.
On the other hand, the dependence on the mass, Planck’s con-
stant and the rotational level density of the C2 are represented
correctly, and the result is much closer to the results in this paper
than any previous attempts.
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procedure used for the KER and also used in [93] for the elec-
tronic degrees of freedom. Specifically, the partition of energy
between one degree of freedom with level density ρ′ and the
vibrational degrees of freedom with level density ρv gives:∑

ρv(E − ε′)ρ′(ε′) ≈
∑

ρv(E)e−ε′/kBTf ρ′(ε′)

= ρv(E)
∑

e−ε′/kBTf ρ′(ε′) = ρv(E)Z′, (35)

where Z′ is the canonical partition function of the primed degree
of freedom at temperature Tf.

This simplifies the expression Eq. (34) significantly because
most contributions factor out. The rate constants become:

ka dε = m2σε

π2h̄3 Z2(Tf )
ρN−2(E − D − ε)

ρN (E)
dε, (36)

where Z2(Tf) is the canonical partition function of the carbon
dimer at Tf. The isomer count and electronic degrees of freedom
of CN−2 and CN are included in ρN−2(E) and ρN(E). Neither
the translational energy nor the rotational degrees of freedom of
CN−2 appear in Eq. (36). This reflects the fact that both of these
types of degrees of freedom have a conservation law associated
with them. The unrestricted summation over states of both C2
and CN−2 which involves a total of 6(vib) + 6(rot) degrees of
freedom therefore reduces to a summation over 3(vib) + 3(rot)
degrees of freedom. For the translational degrees of freedom this
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The detailed balance rate constant is given by [34,74]:

a dε = m2σε

π2h̄3

∑
ρN−2(E − D − ε − ε′)ρ2(ε′)

ρN (E)
dε, (34)

here m2 is the reduced mass of the carbon dimer and the prod-
ct molecule and will be approximated by the dimer mass, σ the
apture cross section for the inverse process, CN−2 + C2 → CN,
the kinetic energy released in the evaporation process, E the

xcitation energy of the parent, D the dissociation energy, and the
’s are the level densities of the molecules indicated by the sub-
cript. The sum in the numerator is over all partitions of energy
n the degrees of freedom of the two products. These include
he vibrational, rotational and electronic degrees of freedom for
oth CN−2 and C2. In addition, isomers may contribute to the
tate counting. Ideally, one should also take symmetry factors
nto account, but we will only include these for C2. The trans-
ational degrees of freedom are already accounted for in Eq.
34). The cross section is energy dependent as seen in the KER
istributions and discussed elsewhere. This is analogous to the
xpression for electron emission given in Appendix B but dif-
ers from this in important details because of the nature of the
mitted particle.

The energy of the product is predominantly carried by the
ibrational degrees of freedom of the large product molecule.
here are 3N − 12 of those, compared with the one vibrational
nd two rotational degrees of freedom for the C2, the three rota-
ional degrees of freedom of the CN−2, in addition to some
lectronic excitations, etc. We will therefore calculate the contri-
ution to the rate constant from all degrees of freedom other than
he vibrational in the canonical ensemble with the temperature
iven by the product temperature, in complete analogy to the
esult is already implemented in Eq. (34) where the translational
nergy of CN−2 does not appear and the reduction of degrees of
reedom has the sole effect of replacing the C2 mass with the
educed mass. Quantitatively this effect is a relative correction of
rder m2/mN−2. For the rotations, the effect of an exact (classical)
ngular momentum conservation is numerically similar [77].
hysically, this can be understood as the ability of CN−2 to absorb

he angular momentum of the evaporated C2. For the emission of
point particle the relative correction to the rate constant from

ngular momentum conservation is found to be on the order of
Er/NkBT if the moments of inertia of product and precursor
cale as N2 (Eq. (21) in [77]). Here Er is the rotational energy
f the precursor. This correction will be ignored.

The thermal properties of C2 can be calculated with the spec-
roscopic data available [94]. The most important electronic
tates are the 1∑+

g ground state with a vibrational frequency of

855 cm−1 and a rotational constant of 1.82 cm−1, and the first
xcited, 3
u, state at 716 cm−1 with a vibrational frequency
f 1641 cm−1 and a rotational constant of 1.63 cm−1. In the
alculations the seven lowest electronic states were used, up
o an energy of 3.4 × 104 cm−1. The symmetry factors, which
re either 1 or 2 depending on the symmetry of the electronic
onfiguration and the value of the vibrational quantum number,
ave also been included. The presence of low lying electronic
xcitations means that the partition function does not factor into
eparate rotational and vibrational contributions. The total con-
ribution is calculated as:

(C2) =
6∑

i=0

gi

T

2Bi

(1 + s + (2 − s)e−h̄ωv,i/kBT )

× (1 − e−2h̄ωv,i/kBT )−1 (37)
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Fig. 2. The electronic–vibrational–rotational partition function of C2 vs. tem-
perature calculated as described in the text. Also shown is the rotational partition
function of the vibronic ground state. The fit with the function described in the
text is also shown, but is hardly discernible.

and shown in Fig. 2. The subscript i refers to the electronic
state, the w′

v,is are the vibrational frequencies, Bi the rotational
constants, and gi the spin degeneracy, 1 or 3. The value of s is
1 if the state is ungerade and 0 if gerade. The main contribution
comes from the rotational partition functions but the contribution
from vibronic excitations is not negligible. At T = 3500 K the
ratio of the two is 11.8. The curve fits well the expression:

Z(C2) = 2.05 × 10−4(T [K])2.14 (38)

between T = 2500 K and 5000 K.
The factors involving the cross section in Eq. (36) are calcu-

lated with an integration over ε to give:

m2

π2h̄3

∫ ∞

0
eε/kBTf σε dε. (39)

There is no experimental measurement of the cross section. We
will therefore need to infer by other means. The most significant
experimental evidences are the kinetic energy release distribu-
tions discussed elsewhere in the paper. They show quite unam-
biguously that there is no activation barrier for the attachment
of a C2 to a fullerene at elevated temperatures. This suggests,
but does not guarantee that the cross section is not hindered by
steric factors. Corroborative evidence for this is the shape of
the energy distributions. They are consistent with a cross sec-
t
w
t
a
w
t
t
1
f
t
n

section of:∫ ∞

0
eε/kBTf σε dε ≈ 1.5πr2

0(kB 3500 K)2
(

Tf

3500 K

)1.6

. (40)

Including the remaining factors in Eq. (39) gives the factor:

m2

π2h̄3

∫ ∞

0
eε/kBTf σε dε ≈ 4.64 × 1018

(
Tf

3500 K

)1.6

s−1

= 9.91 × 1012(Tf [K])1.6 s−1. (41)

The calculated value is somewhat higher than otherwise
expected for clusters, mainly due to the fact that the tempera-
ture, which enters the expression squared, is higher for fullerenes
than for most clusters due to the higher dissociation energy. The
specific polarizability used and the power 1.6 does not change
this conclusion. A higher polarizability gives a power closer
to 1.5 but increases the dimensionless prefactor more than the
corresponding reduction in temperature. The value must have
some size dependence because the radius of the fullerenes is size
dependent as well as their polarizabilities. The change is only
serious if the CN polarizabilities change significantly upwards
and this possibility will be ignored in the following.

Isomers contribute to the level density of the motion of the
nuclei. The precise degree to which they do so will depend
on which isomers can be reached as a result of the fragmen-
ion strongly influenced by the polarizabilities of the species,
ith an enhanced low energy component. The lower limit of

his cross section is the geometric one, σ = πr2
0. An increased

ttraction at low fragment energies increases the cross section
hich ultimately becomes the Langevin cross section. When

he polarization energy at the surface of the molecules is equal
o the temperature, the integrated cross section in Eq. (39) is
.9πr2

0(kBTf )2 with the cross section in [77]. We will use the
actor 1.5 instead of 1.9, for the cross section at Tf = 3500 K. The
emperature dependence will be set to T 1.6

f , based on a fit of the
umerical solution of Eq. (39). This gives an integrated cross
tation process and which are present in the ensemble of parent
molecules. In the simplest picture every isomer contributes to
the level density with a term which is identical to the ground state
contribution, apart from a Boltzmann factor which accounts for
the difference in energy relative to the ground state isomer. This
requires that the vibrational level density of the isomer is the
same as that of the ground state isomer. Calculations at differ-
ent levels of theory have shown that the fullerene isomers of
C60 have only positive vibrational frequencies and are there-
fore local points of stability (see [95] and references therein).
Geometric structures calculated on the basis of topology can
therefore be expected to represent true metastable isomers also
for other fullerenes.

The rate of interconversion is another important issue. If dif-
ferent isomers are effectively prevented from converting to each
other during the time of the experiment because of a high barrier
for the process, they will not appear as terms in the level density
of the precursor. In that case the rate constants should rather be
summed over individual isomer species. Similarly, the product
level density can only include the isomers that can be reached
from the precursor state. The conversion rates for C60 have been
investigated in [95] where it was found that the time to reach
equilibrium through seven Stone–Wales rearrangements could
be as long as milliseconds at excitation energies of 30–35 eV.
At 54 eV the equilibration time was 100 ns, i.e., at the lower
end of the experimental timescale relevant in this work. A fur-
ther reduction in timescale must be expected if more channels
open with the inclusion of non-classical fullerenes, involving
heptagons and squares [96].

At the present level of our knowledge it is not possible
to rigorously quantify the effect of isomers on the rate con-
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Fig. 3. The ratio of the ground state isomer degeneracies of CN−2 and CN. This
factor enters the rate constant as described in the text.

stant, but based on the above remarks we find it reasonable to
include the number of lowest energy isomers for both the pre-
cursor and product in the rate constant. The number is found
for each fullerene as the number of isomers with the lowest
number of pentagon adjacencies, since each additional pen-
tagon adjacency increases the energy by about 1 eV [97]. The
number was calculated with the SPIRAL algorithm [98] and
is denoted by GN. The ratio GN−2/GN is plotted in Fig. 3 ver-
sus N. The values span two orders of magnitude, and deviate
from unity most seriously between N = 50 and 70. Some val-
ues are, e.g., G48/G50 = 7, G58/G60 = 1 and G68/G70 = 20. A
calculation which includes all isomers weighted with a 1 eV
adjacency penalty gives values that differ no more than a fac-
tor of 2 from the result shown in Fig. 3 for temperatures below
4000 K.

The electronic degrees of freedom contribute the ratio
ZN−2/ZN to the rate constant. The same remarks concerning
the equilibration times, as made above for the isomers, apply
here, but the equilibration of the electronic degrees of freedom
is expected to be faster than the ones involved in isomeriza-
tion. The numerically most important cases involve closed shell
molecules, primarily C60 and C70, as either product or precur-
sor. A calculation of all involved electronic states is beyond the
ability of present computational methods, and we have calcu-
lated the ratio using the single particle approximation. The levels
were calculated for C and C with density functional theory
[
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Combining the results of this section we have C2 emission
rate constants of:

k(E) = 2.03 × 1010(T [K])3.74 s−1 GN−2

GN

Zel,N−2

Zel,N

× ρN−2(E − D)

ρN (E)
, (42)

where the ρ’s are the vibrational level densities of the ground
state molecules.

Before comparing this expression to the experimental deter-
minations it is necessary to define more precisely the meaning
of the frequency factor. The emission rate constant has been
approximated with an Arrhenius expression in a number of
places. In this expression the definition of the frequency factor
is unambiguous if applied to a canonical ensemble. The situa-
tion is less obvious when the complete expression in Eq. (42) is
used. Since neither the frequency factor nor the emission tem-
perature are rigorously defined yet, their values can in principle
be changed to arbitrary values by definition, while retaining the
same rate constant. We will allow a temperature dependence of
the frequency factor and in fact consider all factors external to the
ratio of level densities as belonging to the frequency factor. This
possibility is included explicitly in the analysis of the simulated
electron emission data in Appendix A. Furthermore, we must
demand that the finite heat bath correction commonly used to
a
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60 58
99,100] for the decays C60 → C58 + C2 and C+

60 → C+
58 + C2.

ery little of the neutral C60 shell closing is left in the ion-
zed molecules, and the partition function ratio for the last
rocess is close to unity: 1.18 at 3000 K, rising to 1.75 at
000 K. We expect a similar behaviour for other molecules
hich do not have shell closings. For the neutral decay, the

atio is more constant, increasing from 8.4 to 10.3 between
000 K and 4000 K. We will use the constant values 1.5 and
for the two cases. The value of 9 may also provide a rea-

onable approximation for the decay of neutral C70. For decays
nvolving other fullerenes, a value of 1 should give a reasonable
pproximation.
nalyze experimental data will hold quantitatively. This is easi-
st accomplished if one defines the exponential in the Arrhenius
xpression as:

ρN−2(E − D)

ρN (E)
≡ c

(
h̄ωv

Tf

)6

e−Ea/kBTe . (43)

he constant c is introduced for completeness and will turn out
o be unity. The factor to the power 6 on the right hand side takes
nto account that 6 vibrational degrees of freedom have vanished
rom the molecule after C2 evaporation. ωv is a geometric aver-
ge of vibrational frequencies. The (high energy) vibrational
evel densities are:

N (E) = (E + E0,N )3N−7

(3N − 7)!
∏

jh̄ωv,j

, (44)

here E0,N is the sum of vibrational zero point energies. Intro-
ucing this into Eq. (43), approximating (3N − 7)/(3N − 13)
ith unity and cancelling terms, we get:

E + E0,N−2 − D

E + E0,N

)3N−7

≡ ce−Ea/kBTe . (45)

ith the parent temperature kBTm = (E + E0,N)/(3N − 7), the
mission temperature kBTe = kBTm − (D + E0,N − E0,N−2)/
(3N − 7), Ea becomes D + E0,N − E0,N−2. The appearance
f the difference of zero point energies E0,N − E0,N−2, in the
rrhenius exponential is a fairly general feature if one wants to

pproximate ratios of level densities with an exponential. It is
ot an effect of the specific choice made in Eq. (43). Definitions
f the exponential as ρN(E − D)/ρN(E) or ρN−2(E − D)/ρN−2(E)
ive the same result.
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The above derivation has two consequences. One is that
the experimentally determined dissociation energies should be
reduced by E0,N − E0,N−2 = 6h〈wv〉 for a comparison with
theoretical values. With the frequencies calculated for C60 [99]
this amounts to ca. 0.69 eV, which is within reach of experimen-
tal precision. The second consequence is that the theoretical
frequency factor becomes:

ωa = 2.03 × 1010(T [K])3.74 s−1 GN−2

GN

Zel,N−2

Zel,N

(
h̄ωv

Tf

)6

.

(46)

If the geometric average h̄ωv = 90 meV is used, the final result
for the frequency factor is:

ωa = 2.03 × 1010(T [K])3.74 s−1 GN−2

GN

Zel,N−2

Zel,N

(
h̄ωv

Tf

)

= 2.6 × 1028(T [K])−2.26 s−1 GN−2

GN

Zel,N−2

Zel,N

. (47)

For T = 3500 K this equals:

ωa(3500 K) = 2.6 × 1020 s−1 GN−2

GN

Zel,N−2

Zel,N

. (48)

The only value which can be directly compared with exper-
iments is the one for neutral C60 which is ω60 = 2 × 1021 s−1.
This compares very well with the experimental value of
ω
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give a consistent value for the C60 frequency around 1021 s−1,
much higher than usually expected for cluster decays or cal-
culated with RRKM theory. Theoretical results were derived,
based on the detailed balance formalism, and found to be in
good agreement with the experimental results for C60. The fre-
quency factors for C70 and C76 were tentatively calculated and
found to be overestimated in the theory by a factor which is sig-
nificant but still with an error much smaller than that predicted
by traditional reaction rate theory.
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Appendix A. Calculation of corrections to the powerlaw
for the electron emission rate of C60

The electron emission signal is given by:

Ie(t) =
∫ ∞

0
g(E)kee−{ke+ka)t dE, (49)

with g(E) the initial excitation energy distribution of the neu-
t
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60 = 2.3 × 1021 s−1 [53] which was derived assuming a value
e = 1.0 × 1015 s−1 (for C60, C70 and at a temperature of
000 K). Note that the isomer factor (G58/G60) is unity for C60.
he perfect agreement is probably fortuitous. The electronic
artition functions of the fullerenes involved in the other decays
ith experimentally derived frequency factors are not known.
or ω70 the isomer degeneracy alone gives a factor 20 which
ives a theoretical value which is a factor 30 above the exper-
mental value. It does not seem likely that the entropy of the
lectronic degrees of freedom, not included in the estimate, can
ompensate for this factor. One would expect that this factor
ould actually increase this particular frequency factor. For C76

he isomer factor reduces the rate constant by a factor of three
ut it is still a factor of 9 higher than observed. The systemat-
cs of this, admittedly limited sample, suggests that the isomer
egeneracy plays a smaller role than anticipated and that high
requency factors are correlated with high electronic stability.
n the other hand, we now have theoretical estimates which

ither agree with or are moderately higher than experimental
alues. This appears to be a more satisfactory situation than the
pposite.

1. Summary and conclusions

We have reviewed experiments on fullerenes with the purpose
f extracting the frequency factors for C2 emission. Several prob-
ems were identified with assignments made in the literature.
everal robust experimental results were used to extract exper-

mental values for, in particular, the frequency factor for C60.
hese include powerlaw decays, metastable decay and coinci-
ence measurements in electron emission experiments. The data
ral C60. In the simplest case [64] g(E) was assumed constant,
e was ignored in the exponential, and ke, ka were calculated
ith an Arrhenius expression without taking the finite heat bath

orrection into account. Here we will also leave out ke in the
xponential but otherwise generalize the expression by intro-
ucing energy dependences into g, ωe and ωa in addition to
ncluding the finite heat bath correction. The calculation will
rovide the corrections to p due to these effects.

We will assume that energy distributions and frequency fac-
ors depend on energy to some (small) power. This effectively

imics other types of dependences, because the energy range
overed is rather small and it simplifies the calculation signifi-
antly. The notation used is:

(E) ∝ Eα, ωe = ω′
eE

β, ωa = ω′
aE

γ, (50)

here ω′
e and ω′

a are constants with proper dimensions to ren-
er the left hand sides of the definitions correct. The electron
mission rate is then, to the approximation mentioned above,

e ∝
∫ ∞

0
Eαkee−(ke+ka)t dE, (51)

here

e = ω′
eE

βe−Φ/(kBT−(kBΦ/2cm)), (52)

nd

a = ω′
aE

γe−D/(kBT−(kBD/2cm)), (53)

ithout the energy dependences on the frequency factors and the
nite heat bath correction the two rate constants are proportional,
p to the power Φ/D, which made the integration of Eq. (51)
ery simple. Because the leading order term does not change,
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we perform the same substitution to an integral over ka here (the
upper limit is an approximation which is justified in the light of
the large frequency factor):

Ie ∝
∫ ∞

0
E(ka)αke(ka)e−kαt dE

dka

dka. (54)

The Jacobian is:

dE

dka

= 1

ka

1
γ
E

+ D

kBcm

(
T− D

2cm

)2

= 1

ka

1
γ
E

+ kB(ln(ωa/ka))2

cmD

, (55)

where E is to be understood as a function of ka. We calculate
ke(ka) by solving Eq. (53) for T and inserting it in Eq. (52). From
the resulting expression we extract the leading order factor k

Φ/D
a .

The result is:

ke = kΦ/D
a

ωe

ω
Φ/D
a

exp

[
Φ

kB(D − Φ)

2cm

1

(D/ ln(ωa/ka))((D/ ln(ωa/ka)) + (kB(D − Φ)/2cm))

]
(56)

Collecting these expressions, we have:

Ie ∝
∫ ∞

0
e−katkΦ/D−1

a f dka (57)

where

ka))

before performing the integration. As the expansion point we
will use 〈ka〉 = Φ/Dt, calculated without the correction factor f
in Eq. (57). This value can, for our purpose, be set equal to 1/t,
and the correction then becomes:

f ≈ f (kat = 1) exp

(
ln(kat)

d ln(f )

d ln(ka)

∣∣∣∣
kat=1

)
. (61)

With the above approximations we have that

f (kat = 1) = (ln(ωat))
−(α+β−γΦ/D+2)

× exp

[
Φ

kB(D − Φ)

2cmD2 (ln(ωat))
2
]

(62)

I

T
δ

I

A
t

−

T
t
1
s

f ≡ E(ka)α
ωe

ω
Φ/D
a

exp

[
Φ

kB(D − Φ)

2cm

1

D/ ln(ωa/ka)(D/ ln(ωa/

The deviation of the factor f from a constant causes the correc-
tion to the value of p. Since Eq. (58) is a correction, it can be
approximated without serious loss of precision. We have:

1

γ/E + kB(ln(ωa/ka))2/cmD
≈ cmD

kB(ln(ωat/kat))2 . (59)

A factor t has been introduced on both the frequency factor and
the rate constant in the ratio in the denominator. Similarly

E(ka)α
ωe

ω
Φ/D
a

∝ Eα+β−γΦ/D ∝ (ln(ωet/kat))
−(α+β−γΦ/D),

(60)

where the approximate caloric curve E ≈ cmT was used. A better
approximation would include the finite heat bath correction and
the offset in the caloric curve E0, E = cmT − E0. The relative cor-
rection to the energy in Eq. (60) is approximately (D/2 − E0)/E.
For dissociation energies around 10 eV and excitation energies
above a few tens of eV this almost vanishes because the terms
both have absolute magnitudes of about 5 eV.

We will also approximate the denominator in Eq. (58) by leav-
ing out the term kB(D − Φ)/2cm, which is a 2–4% approximation
on the calculated correction. Finally, we will set frequency fac-
tors appearing in logarithms to constants.

All factors in the correction depend on ka in the form ln (kat),
and we will use this to expand f to first order in this quantity
+ (kB(D − Φ)/2cm)

]
1

γ/E + kB(ln(ωa/ka))2/cmD
. (58)

Eq. (57) then becomes:

e ∝
∫ ∞

0
e−kαtkΦ/D−1

a f (kat = 1)

× exp

(
ln(kat)

d ln(f )

d ln(ka)

∣∣∣∣
kat

)
dka (63)

he last exponential is proportional to kat to a constant power,
say. After the substitution x = kat we have:

e = f (kat = 1)t−Φ/D

∫ ∞

0
xΦ/D−1e−xxδ dx

∝ f (kat = 1)t−Φ/D. (64)

calculation of the double-logarithmic slope of this yield gives,
ogether with Eq. (62), the power:

p = d ln(Ie)

d ln(t)
= −α + β − γΦ/D + 2

ln(ωat)
− Φ

D

+ Φ
kB(D − Φ)

cmD2 ln(ωat). (65)

he logarithmic curvature is the sum of the numerical values of
he first and last term, divided by ln (ωat), and is on the order of
0−3, well within the 3% used as the criterion in the numerical
imulations.
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Fig. 4. Numerical calculation of the logarithmic slope of the electron yield vs.
time as discussed in Appendix A. Points give individual values. The line has unit
slope and zero intercept. The inset shows the difference between the calculated
approximate slopes and those extracted from the simulations, with the same
abscissa scale.

The values of β and γ depend on the precise functional form
of the rate constants. If we use the kinetic energy release as a
guideline, the values become β = 1 (electron spectra) and γ = 1.5
(C2 emission). For α we can use the asymptotic value for a
Gaussian laser beam [66], α = −1.

For the sake of the argument we will assume ln (ωat) = 33
which was found in the metastable decay, and use Φ = 7.6 and
D = 10.6. This gives:

−p = −Φ

D
+ 0.011, (66)

or a 2% downward correction of the value of D extracted from the
data. If we alternatively use the value −2 for γ , consistent with
the theoretical estimate in Section 10, we get a more significant
correction to the slope:

−p = −Φ

D
− 0.065, (67)

which amounts to a 10% correction upwards for D.
In order to test the approximations made here we have cal-

culated the value of p numerically for values of α, β and γ from
−3 to 3 in steps of 0.5. The other parameters were D = 10.6 eV,
Φ = 7.6 eV, ωe = 1015 s−1, and ωa = 3 × 1021 s−1, and the time
interval [0.1 �s, 10 �s]. The result is shown in Fig. 4. The agree-
ment between calculated and simulated values is generally rea-
sonably good and particularly good around the experimentally
r
t
m

t
f
s

on the molecular excitation energy and on the laser profile, the
terms may cancel or give rise to a correction.

Appendix B. The thermal electron emission rate
constant of C60

The thermionic emission rate constant, ke, can be calculated
with detailed balance, in analogy to the atomic emission rate
constant, although somewhat simpler than the latter. The expres-
sion accounts both for the kinetic energy release of the electron
and the total rate constant, and we will therefore calculate it in
detail. The expression is analogous to neutron evaporation from
a compound nucleus given by Weisskopf [74]:

ke(E, ε)dε = ge

meσ(ε)

π2h̄3 ε
ρ + (E − Φ − ε)

ρ0(E)
dε (68)

Here ε is the kinetic energy of the electron, me the mass of the
electron (in principle the reduced mass of the channel), ρ+, ρ0 the
level densities of the ion and the neutral molecule, respectively,
and Φ = 7.6 eV is the ionization potential. The factor ge = 2 refers
to the spin degeneracy of the electron. σ(ε) is the energy depen-
dent capture cross section for the electron in the inverse process.
Both energy and momentum are conserved in this expression.
We will disregard the complications due to the angular momen-
tum of relative motion in the decay channel and the rotation of
t
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elevant values between 0.6 and 0.7 where deviations between
he approximate and the simulated values are 0.017 at the

ost.
In summary, we have seen that the corrections to the power in

he powerlaw decay from energy dependences of the frequency
actors and from the finite heat bath corrections have opposite
ign. Depending on precisely how the frequency factors depend
he molecule since the corrections are small for a large molecule.
The level densities in Eq. (68) are not restricted to purely

uclear degrees of freedom but include electronic excitations
lso. The spin degeneracy expresses this explicitly. It is conve-
ient to factor these contributions from the molecules also. It can
e done as shown in [93] in terms of the Helmholtz free energy,
, of the electronic subsystem (ρv,+ and ρv,0 denote the nuclear
egrees of freedom for the cation and the neutral, respectively):

e(E, ε) dε = ge

meσ(ε)

π2h̄3 ε
ρv,+(E − Φ − ε)

ρv,0(E)
dε

× exp

(
− F+

kBT+
+ F0

kBT0

)
. (69)

he two temperatures T+ and T0 are the microcanonical temper-
tures defined the usual way. Inclusion of the electronic degrees
f freedom in this manner automatically takes into account the
egeneracies of the electronic states of the molecule. Both, kBT+
nd kBT0 are rather small compared to the band HOMO–LUMO
ap in the molecule and for this reason one can approximate the
xponential with the ratio of the degeneracies of the ion and
eutral, i.e., the factor of g+/g0, if one includes the possible
tates with small splittings around the Fermi level. The neutral
60 molecule has a closed electronic shell with g0 = 1. The factor

or the positively charged molecules can be estimated from local
ensity approximation calculations, with the obvious caveat that
hese calculations do not give energies of excited states and that
alculations for neutral closed shell molecules do not apply to
he ionic species, if not for anything else, then because of the
ahn–Teller splitting. Calculations by Scuseria [99] and Yabana
100] give either a 10-fold degeneracy for the positively charged
olecule, or 10 states within an energy interval much smaller
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than the expected temperature. We will therefore use a value of
g+/g0 = 10 for the ratio.

The remaining physical content of Eq. (68) is contained in
the cross section. We will use the classical capture cross sec-
tion for an electron in a potential which is purely Coulombic at
separations larger than the sphere radius and which corresponds
to capture on a completely absorbing sphere. The capture cross
section for such an electron–molecule collision is given by:

σ(ε) = σgeo(1 + (|V (r0)|/ε)), (70)

which can be calculated by conservation of energy and angular
momentum. The potential V(r0) is the potential at the point of no
return for the electron’s radial motion. For a Coulomb potential
and a value of r0 = 3.5 Å corresponding to the radius of the C60
cage, V(r0) = −e2/4πε0r0 = −4.1 eV. The electron emission rate
is then

ke(E, ε) dε = g+
g0

2
meπr2

0(1 + |V (r0)|/ε)

π2h̄3 ε
ρ+(E − Φ − ε)

ρ0(E)
dε.

(71)

Since |V(r0)| is substantially larger than the average kinetic
energy, several eV compared to the ion temperature which is
a fraction of an eV, the kinetic energy will essentially have a
Boltzmann distribution with a small correction:
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